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Abstract
We study the equilibrium properties of a model for a binary mixture of
catalytically reactive monomers adsorbed on a two-dimensional substrate
decorated by randomly placed catalytic bonds. The interacting A and B
monomer species undergo continuous exchanges with particle reservoirs and
react (A + B → ∅) as soon as a pair of unlike particles appears on sites
connected by a catalytic bond. For the case of annealed disorder in the
placement of the catalytic bonds this model can be mapped onto a classical
spin model with spin values S = −1, 0,+1, with effective couplings dependent
on the temperature and on the mean density q of catalytic bonds. This allows
us to exploit the mean-field theory developed for the latter to determine the
phase diagram as a function of q in the (symmetric) case in which the chemical
potentials of the particle reservoirs, as well as the A–A and B–B interactions,
are equal.

1. Introduction

Catalytically activated reactions (CARs) involve particles which react only in the presence of
another agent acting as a catalyst, and remain chemically inactive otherwise. Usually, the
catalyst is part of a solid, inert substrate placed in contact with fluid phases of the reactants,
and the reaction takes place only between particles adsorbed on the substrate forming a (dilute)
monolayer. These processes are widespread in nature and are used in a variety of technological
and industrial applications [1].

The work of Ziff, Gulari, and Barshad (ZGB) [2] on the ‘monomer–dimer’ model,
introduced as an idealized description of the process of CO oxidation on a catalytic surface,
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and the subsequent studies of a simpler ‘monomer–monomer’ reaction model [3], represent an
important step in the understanding of the properties of CARs by revealing the emergence
of an essentially collective behaviour in the dynamics of the adsorbed monolayer. On
two-dimensional (2D) substrates, first- and second-order non-equilibrium phase transitions
involving saturated, inactive phases (substrate poisoning, i.e., most of the adsorption sites are
occupied by same-type particles) and reactive steady states have been evidenced and studied in
detail [2–6]. Most of these available studies pertain to idealized homogeneous substrates.

In contrast, the equilibrium properties of the adsorbed monolayer in the case of CARs
are much less studied and the understanding of the equilibrium state remains rather limited.
Moreover, actual substrates are typically disordered and generically the catalyst is an assembly
of mobile or localized catalytic sites or islands [1]; the recently developed artificially designed
catalysts [7] involve inert substrates which are decorated by catalytic particles. Theoretical
studies which have addressed the behaviour of CARs on disordered substrates have been
so far focused on the effect of site-dependent adsorption/desorption rates because natural
catalysts are, in general, energetically heterogeneous [8, 9]; only few studies, in particular
some exactly solvable 1D models of A + A → ∅ reactions and a Smoluchowski-type analysis
of d-dimensional CARs [10], have addressed the case of spatially heterogeneous catalyst
distribution.

Recently, we have presented a simple model of a monomer–monomer A+ B → ∅ reaction
on a 2D inhomogeneous, catalyst decorated substrate, and we have shown that for the case
of annealed disorder in the placement of the catalytic bonds the reaction model under study
can be mapped onto the general spin S = 1 (GS1) model [12] with effective, temperature-
dependent couplings [11]. This allows us to exploit the large number of results obtained for the
GS1 model [12, 13] in order to elucidate, within a mean-field description [13], the equilibrium
properties of the monolayer binary mixture of reactive monomers on a 2D substrate randomly
decorated by a catalyst.

The organization of the paper is as follows. In section 2 we briefly present the model for

a monolayer binary mixture with an A + B
catalyst−→ ∅ reaction on a 2D inhomogeneous, catalyst

decorated substrate and the mapping to a GS1 model; in section 3 we present the mean-field
(MF) approximation. Section 4 is devoted to a discussion of the MF phase diagram for the
particular cases of a completely catalytic substrate, i.e., q = 1, and of an inert substrate, i.e.,
q = 0, respectively. In section 5 we discuss, on the basis of the results for q = 0, the MF phase
diagram for general values of q . We conclude with a brief summary of the results in section 6.

2. Model of a monolayer binary mixture of reactive species on a 2D inhomogeneous,
catalyst decorated substrate

We consider a 2D regular lattice (coordination number z) of N adsorption sites (figure 1),
which is in contact with the mixed vapour phase of A and B particles. The A and B particles
can adsorb onto vacant sites, and can desorb back to the reservoir. The system is characterized
by chemical potentials μA,B maintained at constant values and measured relative to the binding
energy of an occupied site, so that μA,B > 0 corresponds to a preference for adsorption. Both
A and B particles have hard cores prohibiting double occupancy of the adsorption sites and
nearest-neighbour (NN) attractive A–A, B–B , and A–B interactions of strengths JA, JB , and
JAB , respectively. The occupation of the i th site is described by a ‘spin’ variable

σi =
{

+(−)1, site i occupied by A (B),

0, site i empty.
(1)

2
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Figure 1. 2D lattice of adsorption sites (small grey circles) in contact with a mixed vapour phase.
Black (white) circles denote A (B) particles, respectively; solid lines denote ‘catalytic bonds’. (R):
configuration in which an annihilation reaction (↗↖) takes place; (NR): NN pair A–B , but no
reaction because there is no catalytic bond between these sites.

We assign, at random, to some of the lattice bonds (solid lines in figure 1) ‘catalytic’ properties
such that if an A and a B particle occupy simultaneously NN sites connected by such a catalytic
bond, they instantaneously react and desorb, and the product (AB) leaves the system; A and
B particles occupying NN sites not connected by a catalytic bond harmlessly coexist, and we
assume that the reverse process of a simultaneous adsorption of an A and a B on a catalytic
bond has an extremely low probability and can be neglected. The ‘catalytic’ character of the
lattice bonds is described by variables ζ〈i j〉, where 〈i j〉 denotes a pair of NN sites i and j ,

ζ〈i j〉 =
{

1, 〈i j〉 is a catalytic bond,

0, otherwise,
(2)

and we take {ζ〈i j〉} as independent, identically distributed random variables with the probability
distribution

�(ζ ) = qδ(ζ − 1) + (1 − q)δ(ζ ). (3)

Note that the probability q that a given bond is catalytic equals the mean density of the catalytic
bonds. The two limiting cases, q = 0 and q = 1, correspond to an inert substrate and to a
homogeneous catalytic one, respectively. We further assume that the condition of instantaneous

reaction A + B
catalyst−→ ∅ together with negligible simultaneous adsorption of an A and a B

particle on a catalytic bond is formally equivalent to allowing an NN A–B repulsive interaction
of strength λ � 1, followed by the limit λ → ∞, for A–B pairs connected by catalytic
bonds.

As shown in [11], in thermal equilibrium and for situations in which the disorder in
the placement of the catalytic bonds is annealed, i.e., the partition function, rather than its
logarithm, is averaged over the disorder, the model under study is mapped exactly onto that of
a GS1 model. The ‘effective’ GS1 Hamiltonian describing the adsorbate at temperature T is

He = −J
∑
〈i j〉

σiσ j − K
∑
〈i j〉

σ 2
i σ 2

j − C
∑
〈i j〉

(
σiσ

2
j + σ jσ

2
i

) − H
N∑

i=1

σi + �

N∑
i=1

σ 2
i , (4)

3
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where the coupling constants are given explicitly by

J = JA + JB − 2JAB

4
− kBT

2
ln(1 − q) := J0 − kBT

2
ln(1 − q),

K = JA + JB + 2JAB

4
+ kBT

2
ln(1 − q) := K0 + kBT

2
ln(1 − q),

C = JA − JB

4
, H = μA − μB

2
, � = −μA + μB

2
,

(5)

and T is the temperature. In the remaining part of this paper we focus on the symmetric case in
which the chemical potentials of the two species are equal, μA = μB := μ, (implying H = 0),
and JA = JB := j , (implying C = 0). This model reduces to the original Blume–Emery–
Griffiths (BEG) model [13] in zero magnetic field H .

3. Mean-field approximation of the free energy

The mean-field analysis follows closely the presentation in [13] and thus here we only briefly
outline the main steps. The starting point is the variational principle for the free energy F (see,
e.g., [14])

F � �[ρ] := Tr(ρHe) + kBT Tr(ρ ln ρ) (6)

where ρ is any trial density matrix, i.e., Tr(ρ) = 1; the equality holds for ρ =
exp(−βHe)/ Tr[exp(−βHe)], where β−1 = kBT and Tr denotes the sum over all spin
configurations.

Within the mean-field approximation the trial density ρ is chosen from the subspace of
products of single-site densities, i.e., ρ = ∏N

i=1 ρi ; furthermore, restricting to the case of
translationally invariant states, i.e., ρi being independent of i , leads to trial densities of the
form ρ = ρN

1 . Note that this last restriction implies that within the present approximation
the analysis cannot account for the occurrence of staggered states (i.e., splitting in ordered
sublattices) and the emphasis is put on the disordered and ordered homogeneous states. The
single-site density ρ̄1 minimizing the functional �/N , subject to the constraint Tr(ρ̄1) = 1, is

ρ̄1 = exp(−βh)/ Tr[exp(−βh)],
h = −J ′Mσ1 + (� − K ′Q)σ 2

1 ,
(7)

where J ′ = z J , K ′ = zK , and

M := 〈σ1〉 ≡ Tr(ρ̄1σ1),

Q := 〈σ 2
1 〉 ≡ Tr(ρ̄1σ

2
1 )

(8)

are the so-called magnetization M and the quadrupolar moment Q, respectively. This leads to
the following approximation fmf of the free energy per site:

fmf(M, Q) = �[ρ̄1]/N = 1

2
(J ′M2 + K ′ Q2) − 1

β
ln

[
1 + 2e−β�eβK ′ Q cosh(β J ′M)

]
. (9)

Note that in the binary-mixture language the values of the magnetization and of the quadrupolar
moment (equation (8)) represent the difference and the sum (total coverage) of the average
densities n A and nB of A and B species, respectively:

M = n A − nB , Q = n A + nB . (10)

4
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For given values of the temperature T and of the field � = −μ (equation (5)), the
order parameters M and Q are obtained by solving equations (7) and (8). The pair (M, Q)

characterizing the state of the system is selected from the possible solutions as the one which
minimizes fmf in equation (9) above. Explicitly, the equations determining M and Q are

M = 2 sinh(β J ′M)

exp(−βμ − βK ′Q) + 2 cosh(β J ′M)
, (11)

Q = 2 cosh(β J ′M)

exp(−βμ − βK ′ Q) + 2 cosh(β J ′M)
. (12)

Note that there is always a solution of these equations with M = 0, i.e., a disordered state (or,
in the language of binary mixtures, a mixed state).

Alternatively, one may search directly for the absolute minimum of the per-site free-energy
function with respect to M and Q. The values M and Q at the minimum (minima in case of
phase equilibria) will define the thermodynamically stable phase(s). While the first formulation
is more useful for analytical work, reduced to analysing the number of solutions of two coupled
algebraic equations, the latter is advantageous for numerical calculations. In the following we
shall use both of them. Before proceeding we note that fmf(M, Q) (equation (9)) is an even
function of M (i.e., invariant under the change M → −M), and thus in the following we shall
restrict the discussion to the case M � 0; the states with M � 0 are immediately obtained via
a change of sign. This is a consequence of the symmetry in the chemical potentials (μA = μB)
or, in the magnetic language, of a vanishing magnetic field H = 0. In other words, in the space
spanned by (T, μ, H ) the phase diagrams in the plane H = 0 along the H = 0+ side and any
equilibrium state characterized by (M > 0, Q) have corresponding phase diagrams and states
(−M, Q) located on the H = 0− side.

4. Homogeneous catalytic or catalytically inert substrates

4.1. The case of a homogeneous catalytic substrate: q = 1

The case of a homogeneous, completely catalytic substrate can be studied analytically because
of the particular form of the interaction parameters K ′ and J ′. In the limit q → 1, equation (5)
implies

J ′ = z J0 − z
kBT

2
ln(1 − q)

q→1−→ +∞,

K ′ = z J0 + z
kBT

2
ln(1 − q)

q→1−→ −∞,

(13)

while J ′ + K ′ = z j remains finite in this limit. The analysis of equations (11) and (12)
proceeds as follows. From equation (12), the solutions with M = 0, i.e., disorder states, have
the quadrupolar moment

Q = lim
K ′→−∞

2

exp(−βμ) exp(−βK ′Q) + 2
= 0, (14)

for any finite temperature and finite chemical potential μ. This corresponds to an empty lattice
state.

Taking the ratio of equations (11) and (12) we find that the ordered states, M �= 0, satisfy

Q = lim
J ′→+∞

M coth(β J ′M) = |M|. (15)

5
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In this limit the substrate is occupied by a single species, either A or B with equal probability.
With K ′ + J ′ = j z, for any finite temperature and finite chemical potential M is determined
from

M = 1 − exp(−2β J ′M)

exp(β�) exp(−β j zM) + 1 + exp(−2β J ′M)

J ′→+∞−→ 1

exp(−βμ) exp(−β j zM) + 1
.

(16)

It is easy to see that equation (16) has a solution 0 � |M| � 1 for any T > 0 and any μ. Thus,
in virtue of equation (15), the lattice is occupied, with equal probability, either by |M| × N
particles of species A or by |M| × N particles of species B .

4.2. The case of an inert substrate: q = 0

In the case of a catalytically inert substrate, q = 0, we have

J ′ = z
j − 2JAB

2
= z J0, K ′ = z

j + 2JAB

2
= zK0, (17)

and thus the model reduces to the classical BEG model, whose mean-field approximation has
been analysed in detail in [13]. In the following we briefly summarize the main aspects of the
phase diagram of the BEG model such that in the general case q �= 0 we can isolate the effects
solely due to the disordered distribution of the catalyst. Moreover, as will be shown in the next
section, the equilibrium properties of the adsorbate in the general case q �= 0 can be easily
rationalized from the ones on the inert substrate.

First we note that for non-interacting particles, i.e., for j = JAB = 0 so that J ′ = K ′ = 0,
equation (11) implies that M = 0, and thus equation (12) leads to

Q = 2

exp(−βμ) + 2
, n A = nB = Q/2 = f

1 + 2f
, (18)

where f := exp(βμ) is the fugacity, rendering the classical Langmuir adsorption result.
For the case of non-zero interaction parameters j and JAB , only the qualitative features

of the phase diagram can be analytically derived (for details see [13]); here we shall present
phase diagrams obtained via direct numerical minimization of the free-energy function fmf

(equation (9)). Using z J0 as the energy scale, the system is characterized by the parameter
κ0 := K ′/J ′ = K0/J0, the scaled temperature (thermal energy) t , and the scaled chemical
potential u:

t := kBT/(z J0), u := μ/(z J0). (19)

We shall discuss below the phase diagrams, as well as the behaviour of the order parameters M
and Q, in the u–t plane at given values of κ0 � 0. The reason for the latter restriction is that
for sufficiently negative values κ0 < κ

(tr)
0 < 0, where κ

(tr)
0 is a threshold value, it is known that

the system will split into ordered sublattices [15]. However, such states are not captured by the
present formulation of the mean-field equations which assume translational invariance.

Before proceeding with the numerical analysis, we list several general features of the phase
diagram that can be obtained from the analysis of equations (11) and (12).

(i) For M �= 0, equation (11) can be written as

2[tx cosh(x) − sinh(x)]︸ ︷︷ ︸
:=g1(x;t)

+ tx exp(−u/t) exp(−κ0 Q/t)︸ ︷︷ ︸
:=g2(x;t,u)

= 0, (20)

6
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Figure 2. (a) Magnetization M and (b) quadrupolar moment Q for an inert substrate (q = 0) as
functions of t := kBT/(z J0) and u := μ/(z J0) for κ0 = 3.0. The colour coding (shown at the
right) is the same for both figures, and linearly interpolates between zero (red) and one (dark blue)
via yellow, green, and light blue. P1 is a tricritical point, P2 is a quadruple point, and P3 is a critical
end point. Solid black lines are lines of critical points and indicate second-order phase transitions,
while the dashed white lines are lines of triple points indicating first-order transitions.

where 0 < x := M/t � 1/t . Since g1(x; t > 1) is a strictly increasing function
of x , it follows that g1(x > 0; t > 1) > g1(0; t > 1) = 0; moreover, one has
g2(x > 0; t > 0, u) > 0, from which one can conclude that for t > 1 equation (20)
has only the solution x = 0, i.e., there are no ordered states for t > 1.

(ii) For μ < μc(T ) < 0, the positive term g2(x; t, u < 0) dominates over the term g1(x; t),
which is bounded from below, and thus in this range equation (20) has only the solution
x = 0, i.e., there are no ordered states for u < uc(t) < 0. This is an intuitive result:
μ < 0 corresponds to a preference for desorption; thus at low negative chemical potential
the substrate is covered by a low density two-dimensional gas (which is a mixed phase).

(iii) For μ → ∞ and finite temperatures, g2(x; t, u → ∞) → 0, and thus equation (20)
reduces to g1(x; t) = 0 which is equivalent to tanh(x) = tx . It follows that for t < 1
there is always a unique solution x(t) > 0, and therefore there is an ordered state
M(t < 1, μ → ∞) �= 0 such that M(t ↗ 1, μ → ∞) → 0, i.e., if there is a phase
transition at t = 1 (for μ → ∞), it is a continuous order–disorder transition.

(iv) In the case of disordered states (i.e., M = 0) equation (12) reduces to

2ty + ty exp(−u/t) exp(−κ0y) − 2︸ ︷︷ ︸
:=g3(y;u,t)

= 0, (21)

where 0 < y := Q/t � 1/t . For μ > 0 and finite temperatures, g3(y; u > 0, t) is a
strictly increasing function of y, and thus equation (21) has an unique solution, i.e., in the
region μ > 0 there are no phase transitions between disordered states.

We now turn to a detailed discussion of the phase diagrams. The most complicated
behaviour occurs for intermediate values of κ0, e.g., κ0  3 [13]. For κ0 = 3.0, in figure 2 we
show (colour coded) the order parameters M = |n A − nB | and Q = n A + nB , as well as the
lines corresponding to the various phase transitions composing the phase diagram.

At low temperatures, i.e., t � tP2  0.72, and low negative chemical potential, i.e.,
u � u P2  −2.0, the substrate is covered by a very low density, two-dimensional mixed
gas (M = 0, Q � 1), in agreement with (ii) above. Upon increasing the chemical

7
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potential u at fixed temperature t < tP2 , the system undergoes a first-order phase transition
at u = uc(t)  −2.0 (the white dashed line located at uc(t)  −2.0) upon which the density
of the monolayer increases abruptly to almost one (as indicated by the dark blue colour in
figure 2(b)) and the monolayer also (partially) demixes, i.e., 0 < M � Q (as indicated by the
lighter blue or green colour in figure 2(a)). Thus in the region u > uc(t) as anticipated in (iv)
above the substrate is covered by a dense A-rich monolayer (for H = μA − μB → 0+; with
equal probability, a dense B-rich monolayer forms for H = μA − μB → 0−). Therefore this
first-order transition line, which is located at almost constant μ  −2.0 and extends from P2

to t → 0, is a line of triple points.
We focus now on the region u > uc(t). At constant u, upon approaching from below the

line P2–P1, which continues to u → ∞, the demixing is less and less pronounced. Increasing
the temperature at fixed u � u P1 , upon crossing the line starting at P1 (solid black line in
figure 2) the dense A-rich (or B-rich) monolayer undergoes a second-order phase transition
(both M and Q are changing continuously there; note in figure 2(a) the thin band of yellow
colour, which ends at P1, corresponding to very small but non-zero values of M) such that at
high temperatures the substrate is covered by a mixed dense monolayer. As discussed in (i) and
(iii) above, this line of critical points stays below t = 1 for all values of u, and it approaches
t = 1 for u → ∞. Upon crossing the line segment P2–P1 (white dashed line) the transition
from the dense A-rich (or B-rich) monolayer to the dense mixed monolayer is of first order
with a jump in both coverage and composition, i.e., in both Q and M (using the colour code,
for M this is indicated by the transition from red to green, without yellow in between, and for
Q by the direct transition from dark blue to light blue and green). The line segment P2–P1 is
also a line of triple points since there three phases coexist: dense A-rich, dense B-rich, and
dense mixed monolayer, respectively.

For u < uc(t), upon crossing (from below) the line P2–P3 the system undergoes a first-
order transition from a low density mixed monolayer to a higher density mixed monolayer:
there is a jump in the coverage, i.e., Q varies discontinuously (as indicated in figure 2(b) by the
colour change from light green to light blue (without dark green in between)), while M remains
zero. The jump in Q upon crossing the line P2–P3 decreases as the crossing point approaches
P3, and it becomes zero at P3. Thus P3 is a critical point. Note that for temperatures t such
that tP2 < t < tP3 , e.g., t = 0.73, increasing u at constant temperature from small negative
values toward positive values will drive the state of the monolayer from the mixed gas phase
towards the A-rich (or B-rich) dense phase via two consecutive first-order phase transitions,
corresponding to crossing the line P2–P3 (with a jump only in Q) followed by crossing the line
P2–P1 (with a jump in both Q and M).

The point P1 is a tricritical point (it belongs also to the critical lines of the A-rich dense
phase → mixed gas and B-rich dense phase → mixed gas transitions). P2 is a quadruple point,
i.e., at P2 four phases coexist: dense A-rich, dense B-rich, dense mixed, and dilute mixed
monolayer, respectively.

Varying κ0 will lead to topological changes only near the points P1, P2, P3 as follows. For
κ0 � 1, the line P2–P3 and thus the point P2 do not occur (there is no jump in the total coverage
if the density is increased while keeping the monolayer mixed, i.e., in that region which is red
in figure 2(a)), so that at the tricritical point P1 the line of triple points connects directly with
the one corresponding to the second-order phase transitions. With increasing κ0, the line P2–P3

emerges, and for κ0 � 3 the behaviour is the same as the one at κ0 = 3. For κ0 � 3 the only
change is that the point P3 is located at higher values of t than P1. With increasing κ0 > 3,
P1 is shifting towards P2 and eventually reaches the first-order triple line such that for large κ0,
e.g., κ0 � 5, P1 (which at low and medium values of κ0 is a tricritical point) merges with P2

forming a critical end point.

8
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5. The case of a disordered substrate: 0 < q < 1

In the case of a disordered substrate, 0 < q < 1, one has

J ′ = z J0 − zkBT

2
ln(1 − q),

K ′ = zK0 + zkBT

2
ln(1 − q).

(22)

Using again z J0 as the energy scale, the system is now characterized by the two variables t and
u defined in section 4.2, a disorder parameter q̄ defined as

q̄ = 1 − (1 − q)z, i.e., z ln(1 − q) = ln(1 − q̄), (23)

and the parameter

κ(t, q̄) := K ′/J ′ = 2κ0 + t ln(1 − q̄)

2 − t ln(1 − q̄)
. (24)

Here we indicated explicitly that now the ratio κ depends both on the temperature and on the
disorder parameter q̄. (Note that κ(t, 0) = κ(0, q̄) = κ0.) Therefore, we shall discuss the
phase diagrams, as well as the behaviour of the order parameters M and Q, in the u–t plane for
given values of κ0 and q̄.

Equation (24) implies that for any given 0 < q̄ < 1 and κ0 > 0, the ratio κ(t, q̄) becomes
negative at high enough temperatures, i.e., κ(t > ttr, q̄) < 0, where the threshold temperature
ttr is given by

ttr(q̄; κ0) = 2κ0/|ln(1 − q̄)|; (25)

note that for a given κ0, i.e., for a given mixture, ttr is a decreasing function of q̄. As already
mentioned, for sufficiently negative values of κ the system splits into ordered sublattices [15],
which generally leads to a significant decrease in the yield of the catalytic reaction. Using
ttr as a measure of this tendency, equation (25) implies that it is desirable to run the reaction
at low enough temperatures in order to maintain a mixed monolayer, and that this range of
temperatures decreases with an increasing mean density of catalytic bonds.

At constant temperature, and for fixed values of q̄ and of κ0, the parameter κ(t, q̄) is
constant; for two temperatures t1 and t2 > t1, it satisfies κ(t2 > t1, q̄) < κ(t1, q̄) (in particular,
one has κ(t, q̄) � κ0). Thus, for any chosen temperature t̄ � ttr(q̄; κ0) the isotherms M(t̄, u)

and Q(t̄, u) can be simply read as the ones corresponding to an inert substrate, as in section 4.2,
at the same temperature t̄ but for a binary mixture with κ̄0 = κ(t̄, q̄) < κ0. Since larger values
of t̄ correspond to smaller values of κ̄0, the phase diagram is expected to be more similar to
one at low κ0 on an inert substrate, and thus only the first-order mixed gas → A-rich (B-
rich) dense monolayer transition and the second-order transition lines joining at a tricritical
point are generally present. The tricritical point P1 shifts towards increasing values of u
with increasing q̄, and the first-order transition line is a smooth curve (rather than consisting
of two segments P2–P1 and P2 → zero temperature), which runs from u  −2.0 at low
temperature (corresponding to the location in the case κ0) to P1. These qualitative features can
be seen in figures 3 and 4 where we show results corresponding to κ0 = 3.0 for q̄ = 0.3 and
q̄ = 0.6, respectively, which allows one a direct comparison with the phase diagram on the inert
substrate. Note that in these cases the threshold temperatures (equation (25)) for splitting into
ordered sublattices are very high (ttr(0.3; 0.3)  16.8, ttr(0.6; 0.3)  6.54), thus the present
version of the mean-field analysis is justified in the range t � 1 we are interested in.

For an efficient catalytic reaction, the system would have to be operated such that the
substrate is covered by a mixed, not too dilute monolayer, i.e., not too low positive chemical
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(a) [M] (b) [Q]
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1

0.5
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Figure 3. (a) Magnetization M and (b) quadrupolar moment Q as functions of t := kBT/(z J0) and
u := μ/(z J0) for κ0 = 3.0 and q̄ = 0.3. The colour coding (shown at the right) is the same for
both figures, and linearly interpolates between zero (red) and one (dark blue) via yellow, green, and
light blue. Solid black lines are lines of critical points and indicate second-order phase transitions,
while the dashed white lines are lines of triple points indicating first-order transitions.
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Figure 4. Same as figure 3 for q̄ = 0.6.

potential, and temperatures above the second-order transition line, i.e., t  1.0, but below the
threshold temperature ttr(q̄; κ0) for which the splitting into ordered sublattices may occur. For
a given binary mixture, i.e., given κ0, the requirement ttr < 1 implies an upper bound q̄op on
the mean density of catalytic bonds, i.e.,

ttr < 1 ⇒ q̄ < q̄op = 1 − exp(−2κ0). (26)

This is somewhat surprising: a substrate which is only partially decorated by the catalyst, i.e.,
q̄ < q̄op < 1, would be the optimal choice because it avoids transitions into a passive state
(poisoned substrate). For binary mixtures with small values of κ0 the upper bound given above
implies a drastic constraint (e.g., at κ0 = 0.5, q̄op  0.63), while for binary mixtures with large
values of κ0, the above constraint is basically irrelevant (e.g., at κ0 = 3.0, q̄op  0.998).

6. Summary

Within a mean-field approach we have studied the equilibrium properties of a model for a binary
mixture of catalytically reactive monomers adsorbed on a two-dimensional substrate, decorated
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by randomly placed catalytic bonds of mean density q . Our analysis here has been focused on
annealed disorder in the placement of the catalytic bonds and on the symmetric case in which
the chemical potentials μA and μB , as well as the interactions JA and JB of the two species,
are equal.

We have shown that in the general case 0 < q < 1 the mean-field phase diagram and the
behaviour of the composition n A − nB and of the total coverage n A + nB can be extracted from
the corresponding results on an inert substrate (q = 0). We have determined certain restrictions
on the temperature, at which the system is operated, as well as a somewhat surprising upper
bound qop of the density of catalytic bonds, which have to be obeyed in order to maintain
the monolayer in a mixed and thus active state. Even in this highly symmetric case studied
here, the phase diagrams are rather rich, containing, for example, lines of second-order phase
transitions and tricritical points. We have pointed out the likely occurrence of staggered phases
at intermediate temperatures.

Finally, we note that in the generic case in which μA �= μB and JA �= JB , the behaviour
is expected to be even richer (see, e.g., [16] for a detailed discussion of the phase diagrams for
the general spin S = 1 model). These aspects, as well as the issue of staggered phases or that
of quenched disorder, are left for future work.
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